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Summary 
This work is concerned with modelling the mechanical deformation or constitutive behavior 
of composites comprised of a periodic microstructure under small displacement conditions at 
elevated temperature. A mesomechanics approach [ 11 is adopted which relates the microme- 
chanical behavior of the heterogeneous composite with its in-service macroscopic behavior. 

Two different methods, one based on a Fourier series approach and the other on a Green’s 
function approach, are used in modelling the micromechanical behavior of the composite 
material. Although the constitutive formulations are based on a micromechanical approach, 
it should be stressed that the resulting equations are volume averaged to produce overall 
“effective” constitutive relations which relate the bulk, volume averaged, stress increment to 
the bulk, volume averaged, strain increment. As such, they are macromodels which can be 
used directly in nonlinear finite element programs such as MARC, ANSYS and ABAQUS or 
in boundary element programs such as BESTSD. 

In developing the volume averaged or “effective” macromodels from the micromechanical 
models, both approaches (2.e. Fourier series and Green’s function) will require the evalua- 
tion of volume integrals containing the spatially varying strain distributions throughout the 
composite material. By assuming that the strain distributions are spatially constant within 
each constituent phase-or within a given subvolume within each constituent phase-of the 
composite material, the volume integrals can be obtained in closed form. This simplified 
micromodel can then be volume averaged to obtain an “effective” macromodel suitable for 
use in the MARC, ANSYS and ABAQUS nonlinear finite element programs via user consti- 
tutive subroutines such as HYPELA and CMUSER. This “effective” macromodel can be used 
in a nonlinear finite element structural analysis to obtain the strain-temperature history at 
those points in the structure where thermomechanical cracking and damage are expected to 
occur, the so called “damage critical” points of the structure. The “exact” micromechanical 
models can then be subjected to the overall “effective” strain-temperature history obtained 
at the “damage critical” location and used outside of the finite element program to evaluate 
the heterogeneous stress-strain history throughout each constituent phase of the composite 
material. This variation must be known in order to evaluate the damage history variation 
throughout each constituent phase of the composite material. 

*Work finidcd t)y NASA Grant NAG:{-882. 
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1 Introduction 
The ultimate objective of this work is to produce a computer program to analyze the hetero- 
geneous stress and strain history variation at the “damage critical” locations of a composite 
structure operating at  elevated temperature. This report describes some of the theoreti- 
cal foundations for the program. A mesomechanics [l] approach is adopted which relates 
the micromechanical behavior of the heterogeneous composite to its in-service macroscopic 
behavior. 

Some composites are actually comprised of a periodic microstructure whilst others are 
possessed of an essentially randomly distributed microstructure. Pictures of metal matrix 
composites (tungsten-fiber-reinforced superalloys) which exhibit a periodic microstructure 
are shown in Fig. 1 which is taken from the article by Petrasek et al [2]. When the fibers in a 
composite material occupy a large volume fraction of the material, the induced deformation 
in one fiber interacts with and alters the induced deformation in the neighboring fibers. When 
the fibers are densely packed the interaction effect becomes dominant and must be accounted 
for in the constitutive formulation. 

At NASA-Lewis Chamis and his colleagues [3,4,5] employ two different approaches for 
analyzing the behavior of structural composites. One method employs a sophisticated finite 
element analysis of a periodic microstructure. A unit cell in the periodic microstructure is 
modelled with one hundred and ninety two three-dimensional elements and the eight nearest 
neighbor cells of the fibrous composite are modelled with superelements. By applying the 
strain-temperature history at the “damage critical” location in the composite structure to 
the superelement model, the stress-strain history throughout the unit cell can be computed 
and used to estimate the maximum damage in the composite structure. This method will 
necessarily require large resources in computer time and memory to analyze the viscoplastic 
behavior of the composite structure under in-service thermomechanical loading conditions. 

Another approach adopted by Chamis and his colleagues [3,4,5]-which avoids large com- 
puter resources-is to employ composite micromechanics theory to derive simplified rela- 
tionships which describe the thermomechanical constitutive behavior of multilayered fibrous 
composites. 

When suitable boundary conditions are applied to the superelement model of the periodic 
microstructure, it is possible to predict the elastic properties of the equivalent homogenized 
material. A comparison [5] with the homogenized elastic properties predicted by the simplified 
micromechanical equations generally shows good agreement with the superelement model 
except for the Poisson ratios. At high volume fractions (- 60%) the longitudinal Poisson’s 
ratio for unidirectional fibers predicted by the simplified equations is about 15% too small. 
whilst the transverse Poisson’s ratio is about 30% too small. These anomalies occur becausc 
the interaction between the fibers is not accounted for in the simplified micromechanical 
model. This may be important when considering the highly nonlinear behavior of viscoplastic 
composites at elevated temperature. 

Dvorak [6] and Dvorak and Bahei-El-Din et al [7,8,9] have also made great progress in 
modelling the micromechanical behavior of nonlinear composite materials and are embarked 
on a combined experimental and theoretical effort. The variation of the stress-strain history 
throughout the unit cell of a periodic microstructure is obtained with a finite element analysis 
in which the interaction effects of the surrounding cells is accounted for by applying periodic 
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bouiiclary conditions to the surface of the unit cell. 
Work on the theoretical foundations behind the homogenization of micromechanical con- 

stitutive models to produce bulk macroscopic models has been under way in France by Devriks 
and Lbn6 [lo],  Ldnd [11,12], Duvaut [13], Renard and Marmonier [14], Ldnd and Leguillon 
[15] and Sanchez-Palencia [16,17]. These references give a good account of the work be- 
ing conducted in France by other researchers. Much of this work is founded on the use of 
multivariable asymptotic techniques [18]. In an infinite periodic structure the stress-strain 
history in each unit periodic cell is, perforce, identical. Due to the finite size of the compos- 
ite structure the effects of surface tractions and displacements on the surface will cause the 
stress-strain history to vary from cell to cell. If the unit cell is much smaller than the size 
of the structure this variation from cell to cell will be small. If L is a typical dimension of 
the unit periodic cell and D is a typical dimension of the composite structure, then the ratio 
LID is a small parameter of the problem. The displacement variation throughout the unit 
cell will then depend on six spatial variables, z.e., 

ut = ut ( 5 1 ,  x2, x3, xf, x;, 2;) 

where x: = x,L/D. The spatial variables x: take into account the slow variation of the 
displacement from cell to cell due to the finite size of the ratio L I D  when u, is a periodic 
function of the variables x,. By expanding the displacement and other spatial variables of the 
problem into a series in powers of L / D  and equating like powers in the perturbation expansion, 
it is possible to obtain the effect of the finite size of the structure on the deformation behavior 
in the unit cell. Due to the perturbative assumption of small LID this method is not expected 
to be valid for thin composite sections or to be applicable a t  those places in the structure 
where surface effects or nonperiodic inclusions are important. 

Rather than employing finite element techniques to determine the stress-strain history 
variation throughout the unit periodic cell, Aboudi [19] has recently developed a macro- 
scopic formulation for periodic composites based on volume averaging a viscoplastic consti- 
tutive model over the unit periodic cell. This work expands the heterogeneous displacement 
throughout the constituent phases of the unit cell as linear and higher order functions of the 
coordinates. Good agreement with experimental results was achieved by volume averaging 
Bodner’s [20] viscoplastic constitutive model over the unit periodic cell, but the method is 
general and any constitutive model may be used to represent the deformation behavior of the 
constituent phases. The limitation here is that large spatia1 gradients in the strain history 
may not be accurately modelled by linear or quadratic interpolation functions on the unit 
periodic cell. 

Weng and his colleagues [21,22] have employed self-consistent methods to study the effect 
of inclusion size and volume fraction on the stress distribution in and around spheroidal 
inclusions embedded in an “effective” non-uniform matrix material, and the effect which this 
has on the overall “effective” macroscopic constitutive behavior of the composite. In the 
first paper they point out that the derivation of the fictitious body forces which represent 
the inelastic behavior of the heterogeneous cwiiiposite material shoiild be obtained from first 
priuciples rather than using their heuristic approach. In the second paper the Mori-Tanaka 
theorem [24] is used to represent the effect of the heterogeneous composite, and a similar 
procedure is followed in the present work to develop a self-consistent method for composites 
which exhibit a periodic microstructure. In addition, the present report also derives the 
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fictitious body forces for a periodic microstructure from first principles. In reference [23] 
Zhu and Weng have used a combined micromechanics and continuum theory approach to 
develop a creep deformation model for particle-strengthened metal matrix composites. They 
stress the fact that the creep resistance of the composite is underestimated when simplified 
metallurgical and mechanics approaches are adopted. 

A comprehensive application of micromechanics to mechanical deformation problems is 
given by Mura [24] in his book “Micromechanics of Defects in Solids”. This work was used by 
Nemat-Nasser and his colleagues who have exploited the mathematical simplicity of a periodic 
microstructure in order to develop elastic, plastic and creep constitutive models [25,26,27,28] 
for composite materials. The assumption of periodicity allows the heterogeneous stress, strain 
and displacement fields to be expanded in a Fourier series, which greatly simplifies the ensuing 
computations. This technique fully accounts for the interaction effects between neighboring 
fibers. Even when the composite is comprised of closely packed fibers distributed at random 
the method gives accurate results [25] for the “effective” elasticity tensor. When densely 
packed fibers form a large volume fraction of the composite material these interaction effects 
play a dominant r d e  and must be included in the calculations. It appears that inclusion of the 
interaction effects can be as, or more, important than inclusion of the random nature of the 
microstructure when the fibers occupy a large volume fraction of the composite material. In 
this report we have developed the Fourier series approach in order to handle the viscoplastic 
behavior of the constituents in the unit periodic cell. 

The nonlinear constitutive behavior of composites with a periodic microstructure can also 
be treated with a Green’s function approach [29,30,31,32,33]. Here, the periodic heteroge- 
neous material property variation-due to the fibers-is treated as a fictitious body force in 
the matrix material. The Green’s function is used to evaluate the displacement due to a unit 
point force in the matrix material and the actual displacement at any point in the composite 
can then be determined by summing (integrating) the effect due to a volume distribution 
of fictitious periodic body forces. It is shown in Appendix B that this method is exactly 
equivalent to the Fourier series approach by invoking a mathematical technique known as the 
Poisson sum formula. The Green’s function approach is more general in that the method can 
also handle the nonperiodic case where there may be inclusions in one unit cell but not in 
the neighboring cells. It is also able to handle surface effects, although the surface integrals 
which represent the surface effects in the Green’s function method could be expanded in a 
Fourier series for thin composite sections. 

The approach adopted in the present work is to develop homogenization techniques which 
can provide simplified macromodels for use in a nonlinear finite element program, similar in 
spirit to the simplified models used at NASA-Lewis, but which account for the viscoplastic 
interaction effects in the periodic structure and which allow surface effects for thin struc- 
tures to be taken into account. Once the strain-temperature history at the “damage critical” 
location has been found from the finite element analysis, it can be used to “drive” the mi- 
cromechanical relations in order to obtain the stress-strain history variation throughout the 
unit cell. These micromechanical relations are the same relations which are used to obtain 
the simplified homogenized constitutive model. When the unit cell is chosen to have the form 
shown in Fig. 2, it is clear that a periodic arrangement of such a microstructure allows for 
the analysis of laminated composite structures. 
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2 Overview of Theoretical Modelling Approaches 

~ 2.1 Outline of Approach 
In order to develop a homogeneous macroscopic constitutive model from micromechanical 
principles it is necessary to know the stress-strain history throughout the unit cell of a periodic 
composite. Some of the approaches which are presently being given currency are described 
in the introduction. 

The Fourier series and Green’s function approaches can be used to compute the viscoplas- 
tic stress-strain history throughout the unit cell of a periodic composite and can be simplified 
to produce a model suitable for use in a nonlinear finite element program. In this report 
the Fourier series and Green’s function approaches are developed and shown to be equivalent 
to each other by means of the Poisson sum formula. This equivalence holds only for an in- 
finitely extended medium. When the medium has a finite size the effect of spatially varying 
displacements and tractions on the surface of the medium must be accounted for. This is 
easily accomplished with the Green’s function method by retaining the appropriate surface 
integral contributions which are discarded in the case of an infinite medium. In the Fourier 
series approach the surface integral could be included, and, in the case of a thin composite 
section which has an infinite surface the integral can be expanded into a Fourier series. In 
fact, the methods can be combined, so that if inclusions are present in one unit cell and not 
in the neighboring cells, their effect can be taken into account in the Fourier series method 
by treating them with a Fourier integral or Green’s function approach. 

An overview of the present work is depicted in Fig. 3. Simplified versions of the mi- 
cromechanical constitutive equations can be volume averaged to produce a macroscopic ho- 
mogenized viscoplastic model. This can then be used in a nonlinear finite element program 
to analyze the structural behavior of a composite structure under in-service thermomechan- 
ical loading conditions. The finite element analysis yields the strain-temperature history at  
the “damage critical” location and this hlstory can then be applied to the micromechanical 
equations to determine the heterogeneous stress-strain history throughout the unit cell. 

A detailed flow chart in Fig. 4 shows the anticipated structural analysis procedure. Both 
the Fourier series and Green’s function approaches can be used to create a coarse subvolume 
model. This coarse model can then be homogenized and included in a user defined constitutive 
subroutine in a nonlinear finite element program. The Green’s function approach can also be 
used to derive a simple self-consistent model for use in the user subroutine. 

2.2 Homogenized Macroscopic Equations 
A periodic composite material is supposed acted upon by an imposed strain increment A&:. 
and responds in bulk with a stress increment ACT:;. These values are then equated to the 
respective volume averaged quantities in order to obtain the “effective” constitutive relation 
for the composite material, i .e.,  

~ 

wherct V is the volume of the body. 
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In section 4 it is shown that the volume averaged or “effective” constitutive relation for 
the composite material can be written as 

1 
ACT?. = Dm - - JJJ {DTklAckl ( r )  - SDijkl (r)  [A&; ( r )  - ACki ( r ) ] }  dV(r) ( 2 )  

V C  
K 23 z j  kl 

where V ,  is the volume of a unit periodic cell in the composite material, A&z(r )  is the total 
strain increment at point r in the periodic cell due to the imposed uniform total strain 
increment A&$ at the surface of the composite, and ACkl(r) is the strain increment at point 
r in the periodic cell representing the deviation from isothermal elastic behavior. The fourth 
rank tensor SDijkl(r) is defined by the relation 

bDzjkl(r) = 6 ( r )  (DL’kl - DGkl) (3) 

where 6 ( r )  = 1 in the fiber and 6 ( r )  = 0 in the matrix, with Dzfjkl denoting the elasticity 
tensor of the fiber and D;kl that of the matrix. 

In the expression for the average or “effective” constitutive relation in equation 2, the 
quantities A&;!, DYk1 and bDijkl(r) are given. The deviation strain increment Ackl(r) can 
be obtained throughout the periodic cell as a function of position r by using an explicit 
forward difference method since the stress and state variables in a viscoplastic formulation 
will be known functions of position at the beginning of the increment. Everything is therefore 
known explicitly except the total strain increment A&c(r) .  

2.3 Fourier Equation Overview 
In the Fourier series approach described in section 4 we find that the total strain increment 
is determined by solving the integral equation, 

where the fourth rank tensor gklZJ ( C )  is given by 

( 5 )  
1 

!hh (5 )  = 5 (‘$<lMt<’ ( C )  + &ckMzF1 (6)) 

in which the Christoffel stiffness tensor Mz, ( C ) ,  with inverse Adz;’ ( C )  is defined (cf. [33]) by 
the relation, 

with Cp = & , / d m  = ti,/[ being a unit vector in the direction of the Fourier wave vector 6, 
arid < = d G  denoting the magnitude of the vector 6. In equation 4 the sum is taken over 

*I23 ( C )  = D;395Pb (6) 
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and L 1 ,  L2,  L3 are the dimensions of the unit periodic cell in the 2 1 ,  2 2 ,  z3 directions, SO that 
V ,  = L1L2L3. The values of nl ,  722,  n3 are given by 

np = O , f l , f 2 , & 3 , .  . . , etc., for p = 1 , 2 , 3  (8) 

and the prime on the triple summation signs indicates that the term with n1 = n2 = n3 = 0 
is excluded from the sum. 

2.4 Green’s Equation Overview 
In the Green’s function approach the total strain increment A&;(r) is determined by solving 
a different integral equation, zliz., 

- 6 ~ m n r s  (r’) [A&?S (r’) - Acrs (.’)I} d ~ ( r ’ )  (9) 

where the fourth rank tensor Uklmn (r - r’) gives the ICZ component of the total strain incre- 
ment at  point r due to  the mn component of a stress increment applied at point r’ in the 
infinite matrix with elasticity tensor D,”,,,, i.e., 

and the volume integration in equation 9 extends over all the periodic cells in the composite 
material, i. e., over the entire composite. 

The Green’s function tensor is defined in Appendix A, equation A.26, by the Fourier 
integral [24,32,33] 

(11) 
d3K ’fiyl (c) .-iK.(r-r’) 

G,, (r - r’) = e 
--03 

in which the tensor [ is now defined by the relation ci = Ki/K with K = dKqKq denoting 
the magnitude of the vector K = (K1, K2, K3). 

In Appendix B it is shown, by applying the Poisson sum formula, that equations 4 and 9 
are identical, although the summation extends over the integer values nl,  n2, 723 in equation 4 
and extends over the periodic cells in equation 9. 

2.5 Integration of the Equations 
Both equations 4 and 9 are implicit integral equations for the determination of the total strain 
increment A&(r),  since this unknown quantity appears both on the left hand sides of the 
equations and on the right hand sides under the volume integrations. 

The “effective” constitutive relation given in equation 2 and the total strain increment 
relation, given by either equation 4 or 9, contain the volume integration of the deviation 
straiii iiirrcincnt, Ackl(r). In the periodic cell the deviation strain increment at  any point r 
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will be determined from a unified viscoplastic constitutive relation [34] appropriate to the 
constituent phase in which the point r resides. If a constituent phase is included at the fiber- 
matrix interface, a constitutive relation can also be proposed for this phase, and the resulting 
inelastic strain increment determined for inclusion in the volume integrals. This may be 
important for metal matrix composites where there can be chemical reactions between fiber 
and matrix at elevated temperatures, and for composites where the fiber has been coated to 
enhance overall composite properties. 

Equations 2, 4 and 9 form the basic incremental constitutive equations for determining the 
“effective” overall deformation behavior of a composite material with a periodic microstruc- 
ture. In order to update the stress state in each of the constituent phases in preparation 
for integrating the “effective” constitutive relation over the next increment, the constitutive 
relation, 

A q ( r )  = ( A a m  - Acu(r)) (12) 

is used, where Dijkl(r) = D,f,,, or DTkl according as the point r is in the fiber or matrix. 
This relation is used to update the stress aij(r) and, in turn, the internal viscoplastic state 
variables qi(r) at each point r in preparation for computing Ackl(r) in the next increment. 

The derivation of the preceding equations and some methods for their solution are dis- 
cussed in the succeeding sections of this report. Numerical solutions will be obtained during 
the research effort from appropriate FORTRAN computer programs. 

3 Periodic Microstructure 

3.1 Volume Averaging 
The periodic composite is supposed acted upon at its surface by a spatially linear displacement 
increment, A$ (r), given by 

where A&: and A,: are the spatially uniform strain and rotation increments at the surface 
of the composite. 

If the matrix material was homogeneous and had no fibers embedded in it, the strain 
increment would be homogeneous and given by 

Aup(r) = x,A~p’ + x,Aw: (13) 

Since this is constant, we may trivially volume average A&$ over the volume V of the homo- 
geneous matrix material to obtain 

which, by Gauss’ divergence theorem, may be written as 

1 
V 

A&:] = - f/ (n,(r)Au:(r) + ni(r)Auy(r)) dS(r) 
S 
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where the integral extends over the surface of the material and n,(r) denotes the outwardly 
directed unit normal vector at point r on the surface. Thus, by applying the displacement 
increment Aus(r) in equation 13 over the surface of tJhe material to produce the surface strain 
increment given in equation 16, equations 15 and 16 show that the strain increment in the 
matrix material is spatially uniform. 

If the displacement increment AuQ(r) in equation 13 is applied to the actual composite 
material, the total displacement increment within the material, Au‘(r), will vary in a periodic 
manner due to the assumed geometric periodicity of the composite material, so that 

Au’(r) = Auu(r) + Aui(r) (17) 

where A$(r) is the displacement increment which would be induced in the homogeneous 
matrix if the fiber phase were absent, and Aui(r) is the perturbation or deviation from the 
homogeneous value due to the presence of the fibers. 

Corresponding to these displacement increments, the total strain increment at any point 
r in the composite, A&(r),  is given by the relation 

A&L(r) = A$.[  + A&kl(r) (18) 

where 

with representing the spatially constant total strain increment which would be produced 
on the surface and in the interior of the homogeneous matrix if the fibers were absent, and 
Ackl(r) representing the deviation from the uniform value due to the presence of the fibers. 
Both the total strain increment A&c(r)  and the perturbed strain increment Aekl(r) vary 
throughout the composite in a periodic manner. 

We define the volume averaged stress and strain increments as Aao and A&,”,, respectively. 
The required “effective” constitutive equation for the composite material is then an expression 
relating the volume averaged stress and strain increments. For a function f ( r )  which varies 
with position the volume average is defined by the relation 

t? 

I Since tlic conipositc is :tssunicd to be cornpriscd of a periodic. aggregate of idcntical iinit cells, 
I wc may write 

where V, denotes the volume of the unit periodic cell. 
If we volume average the total strain increment in equation 18, we obtain 

(A&:) = (r) dV (r) = + ~ / / / A E M  (r) dV( r) 
VC 

v, v, 
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or 
(A&;) = AE!l+ (AEkl) (23) 

(Ackl) = 0 (24) 

Biit, thc volume averaged total strain increment is defined as A&:!, so that (A&',;) = arid 

which shows that the volume averaged perturbation strain increment, Aekl (r), is equal to 
zero. 

3.2 
If the elasticity tensor is denoted by Dijkl(r) and the inelastic strain tensor by EL(r), then 
the constitutive equation at any point r in the composite material can be written as 

Eigenstrain and Deviation Strain Increments 

d r )  = ajkl(r) ( E m  - E;(r) - w ( r )  (T - To)) ( 2 5 )  

where akl(r) is the coefficient of thermal expansion. 
The incremental form of Hooke's law is 

AUij(4 = ( A & m  - ACkl(4) (26) 

where Ackl (r) denotes the incremental strain representing the deviation from isothermal elas- 
tic conditions and is given by 

Ackl(r) = A&L(r) + a;,(r)AT (27) 

in which 

a&(r)AT = a,,(r)AT + (T - To) Aakl(r) - 

- 4i , : (r )  AaJmn(r) ( E L ( . ,  - &L(.) - %n(r) (T - To)) (28) 

is the nonisothermal increment in strain. The tensors AD+(r) and Aakl(r) represent the 
incremental changes in the elasticity and thermal expansion tensors due to  the temperature 
increment AT. 

In a unified viscoplastic constitutive formulation [34] which is integrated by an explicit 
forward difference method, the inelastic strain increment AE;(r) is a function of the current 
stress (at the beginning of the increment), uZJ(r), and the current values of the internal 
viscoplastic state variables, q2(r). For example, if 

g; = fz, ( G S , Q S )  (29) 

then A&: = fz, (ors, q s )  At, and the inelastic strain increment is independent of the total 
strain increment AeL(r). This independence of the inelastic strain increment on the total 
strain increment is no longer true if an implicit integration method (e .g.  backward difference) 
or sul)iiicrementation method is used. 

Tlic elasticity tensor D!,Ll(r) may be written as 
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where 
bDijkl(r) = 6(r) (Dzf3kl - D i y k i )  (31) 

and d ( r )  = 1 in the fiber and 6(r) = 0 in the matrix, the superscripts f and m referring to 
the elasticity tensor of the fiber and matrix, respectively. The constitutive equation at any 
point r can then be written, from equation 26, as 

~ a ~ , ( r )  = ( D ; ~ ,  + 6 ~ ~ ~ ~ ~ ( r ) )  (A&!! + A&kl(r) - a c k l ( r ) )  (32) 

or 

Aaij (r) = Dlyki ( A&; ( r )  - (r)) = Dgkl ( + A~kl  (r) - (r)) (35) 

From the preceding equation it is evident that the eigenstrain increment, A&:, (r), represents 
the incremental deviation from isothermal elastic behavior in the composite material when 
the elasticity tensor is taken to be a spatially constant tensor appropriate to that of the 
matrix phase. 

Newton’s law for continuing static equilibrium throughout the strain increment requires 
that 

Equations 35 and 36 then require that 

4 Fourier Series Approach 

4.1 Fourier Expansions 
The application of Fourier series to the calculation of the “effective” overall constitutive. 
twhavior of periodic composites has been dealt with in detail by Nemat-Nasser and his col- 
lcagiics [25,26,27,28]. This work is used in this section to develop constitutive relationships 
for viscoplastic composite materials under small displacement conditions. 
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Due to the geometric periodicity of the composite we may expand Auk(r) and A&(r) in 
a Fourier series (cf., for example, Appendix 3 of Mura's book, [24]). This gives 

nl=0 n2=0 n3=O 

where L 1 ,  L2,  L3 are the dimensions of a unit cell in the 51, 22, x3 directions. The coefficients 
Ai& in the Fourier expansion are determined by multiplying each side of equation 39 by 

e 
'Lrrrnl 2 m n 2  2mn3 

-i( 7"'*+- Lz x2+- 
L3 and integrating over the volume of the unit cell to give 

where only the terms with mi = ni survive in the summations. 
Equations 39 and 40 can be written 

Auk (r) = 

with coefficients ACk (e) determined by 

where 

with 

in shortened form as 

fcc 

n,=O 

the inverse relation 

2xni ti = - (no sum on i) for i = 1,2,3.  
Li 

The strain increment A&t,(r) can also be expanded in a Fourier series to give 

f o c  

:a,, -0 

with coefficients AtZl determined by the inverse relation 

(43) 

(44) 

In equations 41 and 45 the prime indicates that the term with nl = n2 = n3 = 0 is excluded 
from the summations, since Aiik (nl = 0, n2 = 0, n3 = 0) represents a rigid body displacement 
increment and AiZl (nl = 0, n2 = 0, n3 = 0) represents a spatially uniform strain increment. 
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4.2 Equilibrium Equation 
By substituting equation 41 into equation 19; equation 9 into the left hand side of equat on 
38; and equation 45 into the right hand side of equation 38, the equilibrium relationship 
becomes 

If E = 
be written as <i = &/c .  Equation 47 can therefore be written in the form, 

denotes the magnitude of the vector 6, a unit vector C in the direction of 6 can 

or 
c2 ( D z k l < l < j )  Ack (6) = - iDgkl&AiLl  (c) 

Mzk ( C )  = Mk? ( C )  = D t k l < l < j  

(48) 

(49) 

(50) 

The second rank tensor, 

is called the Christoffel stiffness tensor (cf. [33]) and equation 48 can be written as 

( C )  A c k  (e) = -iDrrsEjAgT*5 (6) 
This equation can be inverted by premultiplying each side by the inverse tensor E-2M-1 to 
give the Fourier expansion coefficients 

(e) = -iMiil ( C )  D7rscjAc,*, (e) '!-' (51) 

The expansion coefficients can now be substituted into the Fourier expansion of A U k ( r )  in 
equation 41 to give 

np =O 

This result may now be substituted into equation 19, so that the perturbation strain increment 
may be written as 

If we define the fourth rank tensor g k l j j  ( C )  by the relation 
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then the perturbation strain increment can be written in the form 

*ca 

n,=O 

and by inserting the relation for the Fourier expansion coefficients 
obtain 

from equation 46, we 

where the integration extends over the volume, V, = L1L2L3, of the unit periodic cell. 
From equation 18 the total strain increment is given by 

which, from the definition of D&AE;, (r’) in equation 34, may be written in the final form, 

- SDijrs (r’) [ (r’) - ACTS (r’)] } dV( r‘) (58) 

This implicit integral equation-equation 4 in section 2.1-must be solved to yield the total 
strain increment A€;(.) at each point r in the unit periodic cell. 

Instead of solving for A&L(r) from this implicit integral equation, we could use equation 34 
to eliminate AEL(r) from equation 57 to give an equivalent integral equation for A&(r) ,  viz., 

DGklA&il(r) = DGklAckl(r) - SDijkl(r) [AEil - A c k l ( r ) ]  - 

The incremental constitutive relation at any point r is given in equation 35, and this 
relation can be used to update the stress state at any point r in the unit cell once equation 59 
is solved for A ~ i ~ ( r ) .  Alternatively, equation 58 can be solved for A&:(r) and inserted into 
equations 34 and 35. The overall “effective” constitutive relation for the composite material 
can be obtained by averaging equation 35 over the unit periodic cell. This gives 

If we equate the volume averaged stress increment (Aa,,)  and the overall bulk response stress 
increment Aa:, i.e., if (Aa,,) = Aa,”,, and we note from equation 24 that the volume averaged 
perturbation strain increment is zero, i.e. (A&kl) = 0, then the overall “effective” constitutive 
relationship is 

DFklAE!l  - D F k l  (61) 
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or 

1 
AD!’. ‘3 = Dm ajkl A&’ kl - - /// {DzklAckl (r) - 6DijlCl (r) [A&cl (1‘) - Ackl (r)]} dV(r) (G2) 

VC 
v, 

which is the result presented in equation 2 of section 2.2. The procedure for integrating the 
overall “effective” constitutive relation then proceeds as follows. 

4.3 Fourier Integration Algorithm 

1. From a knowledge of the stress state throughout the unit periodic cell at 
the current time, t ,  calculate the inelastic strain increment A& (orS, qS, r) from an 
appropriate unified viscoplastic constitutive relation. The viscoplastic constitutive 
relation will vary according as r is in the fiber or matrix phase, respectively. 

2. Compute the eigenstrain A&(r) throughout the unit periodic cell from the 
implicit integral equation 59 or from equations 34 and 58. 

3. Compute the stress increment throughout the unit periodic cell from equa- 
tion 35 and update the stress, strain and viscoplastic state variables according to 
the relations 

023 (r, t + At) = ~ z j  (r, t )  + ADaj(r), 

E: (r, t + At)  = E: (r, t )  + A&:(r), 

qz (r) t + At) = q a  (r, t )  + Aqa (r) * 
4. Calculate the overall “effective” stress and strain increment for the compos- 

ite from equation 61 and update the overall “effective” stress and strain from the 
relations 

a,”, (t + At) = a,”, ( t )  + AD,”,, 

&f3 ( t  + At) = E : ~  ( t )  + A&:]. 

5. Repeat the preceding calculations for each incremental load step. 

4.4 Implicit Integration Algorithm 
The preceding algorithm makes use of the fact that the inelastic strain increment AEL r) is 
independent of the total strain increment A&c(r)  if an explicit forward difference method--- 
such as Euler or Heun forward difference--is used to integrate the unified viscoplastic relations 
for the fiber and matrix phases. If an implicit method-such as backward difference or sub- 
incrementation-is used, the inelastic strain increment depends on the total strain increment. 
In this case the total strain increment must be obtained by iterating equation 58 in the forIii, 
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The first iterative guess can be taken as Aec(r) = 
to give an improved guess for AEL(r). This process is then continued with 

and the right hand side evaluated 

until the At” and (A + l)th iterates of A&$(r) converge. 
Equation 59 is not so convenient for iteration as equation 58 when A&L(r) depends on 

A&c(r) .  It is always necessary to know the total strain increment A&zl(r) in order to calculate 
the inelastic strain increment A&; (r’, (r’)). But equation 34, viz., 

is an implicit equation for AEL(r) when the iterated quantity, A&il(r),  is given. Equation 63 
is therefore the appropriate equation to iterate when the inelastic strain increment depends 
on the total strain increment. 

The procedure for solving the implicit integral equations in 58, 59 and 63 is described in 
section 8. 

5 Green’s Function Approach 

5.1 
The equation of continuing static equilibrium for the composite material throughout an ap- 
plied strain increment is given by 

Green’s Solution of Navier’s Equilibrium Equation 

where Afi (r )  is the incremental body force per unit volume of the composite material. From 
equations 35 and 66 we obtain 

which is equivalent to equation 37 in the absence of the incremental body force Afz ( r ) .  F’roiii 
this equation it is clear that the divergence of the stress variation produced by A&i,(r) may be 
formally regarded as a fictitious body force increment, analogous to Afz(r ) ,  which is applied 
to the homogeneous matrix material with elasticity tensor DFkl. The theory of elasticity for 
homogeneous materials is generally concerned with the solution of the homogeneous differ- 
ential equation 67- Navier’s equation--when the right hand side is zero. When body forces 
are present the standard method of solution is to obtain the displacement solution at r diie 
to a unit body force applied at r’. This solution is given by the Green’s function G,, (r - r’) 
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which gives the displacement in the ith direction at r due to a unit point force applied in 
the j ‘ ”  dircction at r’. For a distributed incremental body force A fi (r’) the displacement 
iiicreinent at r is obtained by summing the results for the distribution in the form 

Aui(r) = / / /Gij  (r - r’)Afj (r’) dV(r’) . .  
v 

The integration extends over the whole volume, V, of the composite material which may be 
regarded as being of infinite extent. 

When A fj (r’) = 0 we know that the displacement solution is AuT(r) = AuP(r), cor- 
responding to an applied uniform strain increment A&:. on the infinite boundary of the 
homogeneous matrix. For an effective distributed body force increment given by the right 
hand side of equation 67, with A fj (r’) = 0, the solution for the total displacement increment 
Au’(r) can be written as 

This corresponds to equations 17 and 39, the volume integral corresponding to the perturbed 
displacement increment Aui(r) in 17. 

For a material which is homogeneous with elasticity tensor DZkL the Green’s function 
satisfies the differential relation (cf. Appendix A, equation A. l l ) ,  

a2Gkm (r - r’) + Si,& (r - r’) = O 
DGkl axjax, 

where S,, is the Kronecker delta tensor given by Si, = 1 if i = m and Si, = 0 if i # m, and 
6 (r - r’) is the three dimensional Dirac delta function defined by the relation 

6 (r - r’) = S ( X I  - x i )  S ( 2 2  - x i )  S (x3 - z$) (71) 

By applying the Fourier integral techniques in Appendix A, the Green’s tensor is shown to 
have the Fourier integral form, 

in which the inverse Christoffel stiffness tensor (cf. [33]) MiT1 ( C )  is defined by 

M,;l(C) = (D;jqcPcJ1 (73)  

with C p  = Kp/  JK,Lh;, = K,/K being a unit vector in the direction of the Fourier wave 

vector K, and K = , , /CKL denoting the magnitude of the wave vector K. 
Making use of the relation 
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wc may write equation 69 in the form 

d 
Au’(r) = AuP(r) - JJJ- (Gik (r - r’>DEm,A&, (r’)) dV(r’) + 

V 8x1 

The first volume integral can be transformed into a surface integral via Gauss’ divergence 
theorem, vuiz., 

(76) 
The surface integral extends over the entire outer surface of the “infinite” matrix material. 
Since this is assumed to be at an infinite distance, all the integration points r’ in the surface 
integral are at an infinite distance from the field point r and Gik (r - r’) = 0. Thus, for an 
infinite body the first volume integral in equation 75 vanishes. This would not be the case 
for a finite body in which the field point r is close to the surface integration point r’, and 
the volume (or surface) integral would need to be retained for these situations. In this case 
other surface integrals would arise (cf. Appendix D, equation D.27) due to the application of 
boundary incremental displacements or surface tractions on the surface of the material. 

From the properties of the Green’s function, 

which follows since Gik is a function of 

(78) 
I I r - r’ = (xl - xi, 22 - x2, x3 - x3) 

Equation 75 may then be written alternatively as 

But A&z(r) = 

with respect to x, and xJ and taking half the sum, we obtain 
(8  (AuT(r)) /8xj + d (AuT(r)) / ax i ) ,  so that by differentiating equation 79 

which, by means of equation 34, may be written as 
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An equivalent integral equation, involving the eigenstrain increment 
obtained by using equation 34 to eliminate Ae:(r) from equation 80, which gives 

(r), can also be 

In the preceding equations the operator, 

d2Gik (r - r‘) d2Gjk (r - r‘) 
d X i d X l  d X j d X l  

+ Uijkl (r - r’) = - - 

gives the ij component of the strain increment at  point r due to an applied stress increment 
component IcZ at point r’ in an infinite homogeneous medium with elasticity tensor DZkl and 
Green’s function given by equation 72. 

5.2 
From equations 18, 56 and 80 we see that the perturbed strain increment, Aekl(r) = A&L(r) - 
A&:,, is given by the equivalent relations, 

Equivalence of Perturbed Strain Increment 

or 

~ & k l ( r )  == ///Uklrnn (r - rl> DznrsA&:S (i) dv(r’) (85) 
V 

The volume integral in the Fourier series representation extends over the volume, V,, of 
the unit periodic cell and the summation extends over the integers np = 0, f l ,  f 2 , .  . . , etc. ,  
where p = 1,2 ,3 .  In the Green’s function approach the volume integral extends over the 
entire infinite medium, ie., over all the periodic cells comprising the material. It is shown in 
Appendices B and C t,hat the Fourier summation expression in equation 84 can be converted 
into the Green’s function expression in equation 85 by means of the Poisson sun1 formula. 

From equation 34 it is evident that if the elastic properties of the fiber are the same as 
that of the matrix, then SDIJkl(r) = 8(r) (DLkl - D t k l )  = 0, in which case 

is known explicitly without having to solve the integral equation. From equations 58 and 81 it 
can also be observed that A&;(r) is known explicitly when 6Dijkl(r) = 0. The explicit relation 
in equation 86 holds only when an explicit forward difference method is used to integrate the 
viscoplastic constitutive relations. For implicit integration methods in which the inelastic 
strain increment A&L(r) depends on the total strain increment A&g(r), equations 58 and 
81 show that even when 6D,,kl(r) = 0, the equation to determine A&L(r) is still an implicit 
integral equation. 
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6 Self-Consistent Method 

6.1 Outline of Self-Consistent Method 
In this section we establish a self-consistent relationship between the overall “effective” stress 
increment, Aa;., and the applied strain increment, A&$., for a matrix material which has 
cylindrical fibers embedded in it in a periodic fashion. 

From equations 34 and 61, this relationship can be written as 

where the total strain increment is determined from equation 81 in the form, 

These equations can be solved in an approximate fashion by means of a self-consistent 
method in the following manner. 

First, assume that the unit periodic cell consisting of a cylindrical fiber embedded in a unit 
matrix cell, Fig. 5, is replaced by a cylindrical fiber (of radius = a )  embedded in a cylindrical 
matrix (of “effective” radius = b)  as depicted in Fig. 6. The other unit cells outside the given 
unit cell-ie., the rest of the composite-are then smeared out into a uniform matrix material 
whose overall “effective” constitutive properties are the volume average of the constitutive 
properties of the constrained unit periodic cell. The “effective” constitutive properties will 
be transversely isotropic if the fibers are arranged in hexagonal arrays or tetragonal if they 
are arranged in square arrays. 

Second, assume that the total strain increment, A&g(r), and the strain increment repre- 
senting the deviation from isothermal elastic behavior, ACkl(r), are spatially constant in the 
fiber and matrix phases of the unit cell. These constant values (different in the fiber and 
matrix of the unit cell) are taken to be the volume averages over the respective constituent 
volumes of the fiber and matrix phases of the unit cell. 

The composite now consists of three constituent phases, viz., the fiber, matrix, and 
smeared out average phases. If the elasticity tensors of these phases are denoted by D i k l ,  
Dckl and OtJkl, respectively, then the elasticity tensor at any point r in the composite can be 
written as 

Dklrs(r) = D k l r s  + SDklrs(r) (89) 
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if r is in the surrounding smeared out “effective” material. 
The fiber and matrix constituent phases now represent fictitious body forces in the infinite 

“effective” medium with elasticity tensor Bijkl, and the total strain increment is obtained from 
the solution of the integral equation, 

6.2 Strain Increments in Three Phases 
We now make the approximation that the strain increments in the three phases are spatially 
constant and equal to their respective volume averages, so that if r‘ is in the fiber A&; (r’) 
and Acij (r’) are replaced by 

1 
A&:(f)  = - / / / A E ;  (r’) dV(r’) 

Vf 

and 

so that, from equation 27, 

with 
ACZJ(f) = A $ ( f )  + a : p T  

I 

I a:;fAT = a,f,AT + (T - To) AaG - 
P 

- ( D z f i k l ) - l A D i l n i n  (&:n(f) - &mn(f) - afnn (T - T o ) )  

If r’ is in the matrix the relations are replaced by 

and 

wherc 

and 
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If r’ is in the smeared out “effective” or homogenized medium the corresponding results are 

1 
(103) 

G.. T = A&?. = - / / / A E ;  (r’) dV(r’) 
a3 v, 23 

v, 
and 

where 

and 

The volumes V,, V, and V, refer to the volumes of the fiber, matrix and smeared out medium, 
respectively. If V, is the volume of the unit cell and V denotes the total volume of the entire 
composite material, then 

6.3 Applied, Homogenized and Volume Averaged Increments 
At this point it is important to emphasize the following distinctions. First, the strain incre- 
ment applied to the composite is denoted by A&$ which causes an incremental stress response 
Ag;. To obtain the overall “effective” constitutive equation these are equated to the cor- 
responding volume averaged quantities, (A&:) and  ACT^^). In the “effective” homogenized 
medium all quantities are denoted with overbars. 

At any point r the appropriate constitutive relation is 

AOzj(r) = D7jkl(r) (A&L(r) - Ackl(r)) (108) 

If we volume average this relation over the unit cell we obtain 

In the homogenized phase the constitutive relation can be written as 

T Since the strain increment zkl in the homogenized phase must correspond to the applied 
strain incrcnient A&:,- as in equation 103- and the homogenized stress increment aazj must 
corrcspond to the overall bulk stress increment ACT:, we write the constitutive relation for 
the homogenized phase as -~ 

A,: = D,jk,AEil - Dijkl Ackl (111) 
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6.4 Requirement for Self-Consistency 
For self-consistency we require that the volume average of the microscopic constitutive relation 
in equation 108 over the unit cell, viz. equation 109, should correspond to the constitutive 
relation for the overall “effective” homogenized medium in equation 111. That is, 

for self-consistency. Under the approximation that the strain increments A&; and Ackl are 
spatially constant in the constituent phases, we obtain 

or 

At this point the elasticity tensor Dt,kl and the deviation strain increment &kl in the homoge- 
nized medium are unknown quantities. In the next section we will solve the integral equations 
for the total strain increments in the fiber arid matrix phases, A & z ( f )  and A&L(m), and we 
will find that these values depend on the quantities DZjkl, and & in the surrounding 
homogenized medium. Then, by equating the coefficients of on both sides of equa- 
tion 114 we obtain a relationship for the unknown elasticity tensor D Z J k l  of the “effective” 
homogenized medium. The value of the unknown deviation strain increment z k l  in the ho- 
mogenized medium can then be obtained by equating the terms independent of on the 
left hand side of equation 114 to the corresponding term D z j k l Z k l  on the right hand side. 

We now obtain the total strain increments AeL(f) and A&;(m) in the two phases of the 
unit cell. First, consider the total strain increment in the fiber phase. 

6.5 Total Strain Increment in Fiber Phase 
Equation 93 can be volume averaged over the fiber phase to give 

where the field points r are in the fiber voliii~ie, V j ,  and the integration points r’ are in all 
three volume phases (V = Vf + V,,, + Vs) .  Equation 115 can be written as 
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in which DklrsA&Fs (r‘) has been replaced by 

in the respective fiber and matrix phases, and by 

in the smeared out “effective” medium where S D k l r s  (r’) = 0. 
In the first integral in equation 116 the field point r lies in the volume V’, and since 

is Eshelby’s tensor (cf. Appendix E, equation E . l  and [35]), which is a constant tensor 
independent of r when the field point r lies within the cylindrical volume V included in an 
infinite medium with elasticity tensor D k l T s ,  we may write the first integral as 

The second volume integral extends over the volume V, = V, - Vf of the matrix phase. Thus, 
for the second integral, 

since the field point r lies in the cylindrical volume V’ and therefore within the cylindrical 
volume V,. 

We now have to deal with the last integral in equation 116. This integral can be written 
as 
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which can be transformed via Gauss’ divergence theorem into two surface integrals: one over 
the outer “infinite” surface S of the smeared out “effective” medium; and the other over the 
i1iiic.r siirfaw of thc “cffective” medium, i.e., over the surface S,. of the unit periodic cell. The 
voluiiic iiit,cgral then takes the form, 

where n: (r’) is a unit normal vector at  point r’ on the surfaces pointing away from the volume 
V,. Now since the field point r lies in the fiber and the integration points r’ on the surface S 
are infinitely removed, we have d G i k  (r - r’)/dq --+ 0 on the outer surface s of the composite, 
and the first surface integral can be neglected. If we write ni (r’) = -nt (r’), then ni (r’) is a 
unit normal vector pointing away from the volume V, on the surface S, of the unit cell, and 
we have, via Gauss’ divergence theorem and equations 77 and 83, 

Since the field point r lies in the cylindrical volume V,, the preceding equation takes the form, 

or 

JJ /Ui j k l  (r - r’) dV(r‘) D k l T s n C T s  = -S,j,,K&s 
v, 

where S,Jr.s is Eshelby’s tensor for a cylinder with elasticity tensor i j k l .  

From equations 116, 121, 122 and 123 we obtain 
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1 -_  
A&c(f)  = AEyj + Si j rs  ( A c r s ( f )  - &-s - Drspg SDLmn [A‘zn(f)  - A C m n ( f ) ] )  

Given that 
Iigkl  = 5 (bikbjl + bjkbil) 

denotes the fourth rank identity tensor for symmetric second rank tensors, the preceding 
equation can be written as 

1 
[Iijmn + Si jrsDrspq  ~ ~ , f Y r , , n ]  AEzn(f) = 

+ S i j r s  (ACTS ( f ) - z r s )  + SijrsDr:pq 6DLmn ACn,, (f ) 
+ 

1 

which, by premultiplying each side with the inverse of the tensor in square brackets, gives 

1 
A E ; ( ~ )  = [Ii jmn + SijraD,, b ~ ~ ~ , , , , , ]  -’ 

+ srnnklDklpq 6DLqrsACrs (f) } 
+ smnrs  ( ~ c r s ( f )  - G r s >  + 

(125) 
1 - _  

The phase volume averaged stress increment in the fiber is then given by the relation 

6.6 Total Strain Increment in Matrix Phase 
Now consider a field point r in the matrix phase. From equation 93 we may write 

Since b:,, = V, - V,, the second integral can be written as 
n n n  
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and from equation 123 the last integral in equation 127 may be written as 

so that equation 127 is transformed into 

or, since Vm = V, - V f ,  
r 

Now consider the first integral in equation 132. We may interchange the order of the 
volume integrals so that 

Now r and r’ are dummy integration variables, so that on the right hand side of equation 133 
the variables may be replaced with the integration variables x and y, viz., 
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But, from equation F.5 of Appendix F, 

u, . ,k l  (x - Y> = K J k l  (Y - XI 

so that 

and the dummy variables y and x may be replaced with the variables r and r‘ to give 

This relationship is discussed in Mura’s book ([24], page 336) where it appears under the 
heading of the Tanaka-Mori theorem. 

From equation 136, the first integral in equation 132 is integrated over the field points r 
within the cylindrical volume Vf .  Since these field points lie within the cylindrical integration 
volume V,, the first integral in equation 132 may be written as 

In the second integral in equation 132 the field points r lie within the cylindrical volume V, 
and so the second integral may be written as 

K 
v,,, = -StJrS (AE:,(m) - G,,s> 

In the third integral the field points r lie within the cylindrical volume Vf and so 
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Finally, in the fourth volume integral, the field points r lie in the cylindrical volume V f .  
Since this lies within the cylindrical integration volume V,, we have 

We thus obtain from equations 132, and 137 to 140, 

This relation for the total strain increment in the matrix phase is similar to that for the fiber 
phase given in equation 124. By following the steps leading to equation 125 the expression 
for A&c(m) can be put in the form 

The phase volume average stress increment in the matrix is then given by the relation 

Aa,j(m) = D t k l  (A&g(m) - Ackl(m)) (143) 

6.7 Overall “Effective” Constitutive Relation 
As stated in section 6.4, for self-consistency we require that the volume average of the con- 
strained rnicromechanical constitutive relation over the unit periodic cell should correspond 
to that for the “effective” homogenized medium. From equation 114 we require that 

I 
1 



where the total strain increments in the fiber and matrix phases are given by equations 125 
and 142 as 

and 

with the deviation strain increments defined in equations 97, 101, 105 as 

Acij(f) = A&;(f) + aGfAT (147) 

By inserting equations 90, 91, 145, 146 147, 148 and 149 into equation 144 the relationship 
for self-consistency requires that 

in which 

and 
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These results for B i j k l  and c i j k l  can be simplified somewhat. We write B i j k l  as 

B . .  ---y.. Vf 
zjkl  - z j k l  v, 

f -l 
( D ~ j k l )  Y k l m n  + Izjmn = ( I z j k l  + X z j k l ) - '  ( S k l m n  + X k l m n )  

which can be premultiplied by (IpqzJ + XPqzj )  to give 

( I p q z j  + x p q z j )  ( D L k l ) - l  Y k l r n n  = S p q m n  - I p q r n n  

from which 
Y z j k l  = D&q ( I p q r s  + X p q r s ) - l  ( S r s k l  - I r g k l )  

From this result we find that B z j k l  and C z j k l  can be written in the simplified forms 

Equating the coefficients of in equation 150 for self-consistency then requires that 
- 

(164) D . .  = A , .  ajkl y k l  

which, from equation 151, produces the implicit relation 

The value of homogenized "effective" elasticity tensor DZjkl may be obtained from this ini- 
plicit relatioiihhip by iteration. Naturally, when the self-consistent method is embedded iii a 
Iioti1iiitw.r fiiiitc cltwicnt program, this it,cratiori would be doiic outside of the code arid thc 
c>sl)Iic*it vaI i io~  of D, , A ,  wordd tw i i s c d  iii the. progrmi. 
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For sclf-consistency we also require from equation 150 that 

and 
sz: = [ D z j p q  ( S p q r s  - I p q r s ) ] - ’  ( B r s k l a i f  + c r s k l n ; ; “ )  (169) 

The overall “effective” constitutive relation for the homogenized composite in equation 150 
is now easily computed. 

If a forward difference algorithm is used to evaluate the viscoplastic strain increments, 
the only implicit equation which occurs in tlic formulation is t,hat for the elasticity tensor 
of the homogenized medium given in  equation 165. It is, perhaps, ironic that in deriving 
the higlily nonlinear viscoplastic constitutive relationship for the homogenized medium, the 
only iterative procedure required is that for the elasticity tensor. This implicit elasticity 
relationship also occurs in the subvolume method due to the occurrence of the tensor b D z J ~ ,  
in the volume integration. The implicit nature of D Z J k l  is due to  the fact that the homogenized 
elasticity tensor is found by volume averaging the constrained elastic properties of the unit 
periodic cell, and these constrained properties, in turn, depend on the elasticity tensor Dtjkl 
of the homogenized constraining medium. 

The constitutive relations given in equations 126 and 143 are used to update the stress- 
strain history in the constituent phases, whilst equation 150 is used to update the stress-strain 
history in the homogenized self-consistent medium. These relations, which contain A & :  (f), 
A&;(rn) and Dz3k,, depend on the Eshelby tensor Szjrs for the homogeneous smeared out 
medium. which is defined in equation 123 as 

(1 70) 

when the field point r lies within the cylindrical volume, V .  The “effective” homogeneous 
sniearcd oiit medium for a composite with cylindrical fibers will exhibit transverse isotropy if 
the fibers are arranged in hexagonal arrays, and it is shown in Appendix E that the Eshelby 
tensor for a transversely isotropic cylinder, whose z3 cylindrical axis is normal to the plane 
of transverse isotropy, has the component foriri, 

( 173) 



- 
- 01133 

2 ~ 1 1 1 1  
s2233 - 

- x + 2 p  x x 0 0 0 -  
x x + 2 p ,  x 0 0 0 
x x x + 2 p  0 0 0 

0 0 p o o  
0 0 0 o p o  

) =  

0 

- 0 0 0 o o p -  

(174) 

(176) 

(177) 

(178) 

(175) 

with all other Sijkl = 0. If the fibers are arranged in tetragonal arrays, the Eshelby tensor 
will exhibit tetragonal symmetry. This case is currently being worked out. 

7 Integration of Self-consistent Model 
Fourtli rank tensors can be written in Voigt, notation as matrices and second rank tensors as 

. For example, with the notational changes? 

AQ A023, Au, = AUI;~, Aut; = A012 

Hooke’s law for an isotropic elastic medium can be written as 

(179) 

For ii transversely isotropic medium ---such as the smeared out “effective” matrix for hexagonal 
tlic rclationsliip can be writ,tcli a s  
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I -  

0 0 0 

0 0 0 0 

0 0 0 0 0 2  (301111 - 0 1 1 2 2 )  

mill - 

The Eshelby tensor [35] relates the constrained strain increment, in an inclusion 
n~liic.11 iindcrgovs a transformation or cigcrist,rain incrcnicnt, AE;, , in an irifinitc rricdiiini with 
vlast icity tcnsor D 4 , k l ,  in the form 

= S z ~ k l  AEil 

In Voigt notation we have 

where the Eshelby matrix takes the form, 

AE; = S,,AE,* 

[St, I = 0 0 0 

0 0 0 

0 0 0 

0 0 0 

The integration of the self-consistent model then proceeds as follows. 

1. Initialize the starting variables: time t = 0; temperature T = TO; overall 
“effective” stress and strain a,O = E: = Z! = 0 for i = 1 to 6;  stress and strain in the 
respective phases a,(f) = & T ( f )  = ~ r ( f )  = 0, and a,(m) = ~ T ( r n )  = ~ r ( m )  = 0 
for i = 1 to 6; equilibrium stress in the respective phases st,(f) = st,(m) = 0 for 
i = 1 to 6 ;  drag stress in the re3pective phases K ( f )  = Ko(f) and K ( m )  = Ko(rn). 

2. Compute the overall “effective” elasticity matrix iteratively from the relation 

where is the Kronecker delta matrix, Sk l  = 1 for k = j and Sk]  = 0 for k # j ,  
;uid the Eshclby matrix S,, is givcii i i i  cqiiation 182. 

3. Start tlic. loading history stcp. Evaluate the inelastic strain and state vari- 
i1l>lcl iiicrcmiciits in the fiber a,id matrix phases from the unified viscoplastic con- 
btitutivt relations. Any unified viscoplastic model may be used. Such relations 
inay l ia t \ .~  the following form: 
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In the fiber the inelastic strain increment is 

where the equilibrium or back stress increment is calculated from the relation 

for i = 1 to 6, and the drag stress increment, from 

In the matrix a similar set of constitutive relations can be used, so that 

An,(m) = e;"a.$(m) - Q,'~ &A&r(m)A&r(m) f12,(7n) 

for I = 1 to 6, and 

A K ( ~ >  = [e? - el;" ( ~ ( m )  - ~ 0 ( m ) ) ]  J + r ( m ) ~ & g ( m )  

The quantities n f ,  nm, e;, er, for p = 1 to 4, are material constants associated 

The deviatoric stress in the fiber phase is defined by 
with the unified viscoplastic constitutive relations. 

. I ( f )  = G ( f >  - ; ( d f )  + 0 2 ( f )  + d f ) )  for i = 1,273 

arid 
s,(f) = o,(f) for i = 4 , 5 , 6 .  

Similar relations apply to the matrix phase, 217z., 

S / ( 7 ! L )  = U1(7! ! )  - ( 0 , ( 7 l t )  + 0 , ( 7 ? ? )  + 0 , , ( 7 n ) )  for i = 1 , 2 , 3  

s , ( u i )  = 0 ? ( 7 r ~ )  for i = 4 , 5 , 6 .  
and 

4. C'onipute the "cffective" inelastic and thermal strain increments from the 
rclations 

GLP = [np ( S p q  - 4 4  - l  (&&,P(f) + CqkAE,'(d) 
and 



5. Evaluate the deviation strain increments from the relations 

Ac,(f) = A&,P(f) + ruifAT 

A c , ~ ( ~ )  = A&,‘(m) + ai”AT 

C, = Zqp + E:AT 
and 

6. Evaluate the phase voliime averaged total strain increments 

and 

7. Calculate the stress increments in the fiber and matrix phases from the 
relations 

AUi(f) = Df ( A q f )  - ACAf)) 
and 

Aoi(m) = Dg (A&T(m) - Acj(m)) 
8. Compute the overall “effective” stress increment from the relation 

9. Update the variables: 

0 2  (f, t -t At) 0% (f, t )  + ADz(f> 
oz (m,t t At) = oz (m,t )  + Aoz(m) 
Qz (f, t + At) Qz (f, t )  + AQ(f) 
0, (m, t + At) = QZ (m,t)  + As2,(m) 
K (f, t + At) K (f, t )  + A K ( f )  

K (m, t + At) = K (m, t )  + AK(m) 
E: (f, t + At) E: (f, t )  + AE,P(f) 

E: (m, t + At) = (m, t )  + A&,‘(m) 
ET (f, t + At) E T  (f, t )  + AET(f> 

ET (m, t + At) = E: (m, t )  + A&T(m) 
of ( t  + At) = of ( t )  + A,: 
E; ( t  + At) = E: ( t )  + A&: 
T(t  + At) = T( t )  +AT 

= 

= 

= 

= 

= 

10. Start new load step. 
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~ 8 Subvolurne Method 

8.1 

The determination of the stress and strain increments throughout the composite material 
requires the solution of the integral equations 

Approximate Integration of Integral Equations 

q L A & ; l ( r )  = D?klACkl(4 - fiD,Jkl(r) [A&!, - Ack/(r)] - 

or 

at  each field point r in the unit periodic cell. 

the unit cell into a number of subvolurries and assuming that AE;,,, (r’) is replaced by 
Nemat-Nasser arid his colleagues [25,26,27,28] have demonstrated the efficacy of dividing 

corresponding to its average value in the ijjth siibvolume. 

subvolumes in the matrix. Then the preceding integral equations can be written as 
Let there be N subvolumes in the unit cell, with M subvolunies in the fiber and N - AI 

I q k l A & ; h 9  = D;k,Ack/(r) - 6Dz,x/(.) [A&;, - 4 r ) ]  - 

wlierc 
field poilit r is iii the first pcriodic cell for wli idi  q = 1. 

t o  givo 

dciiotcs tlic /jth suholimie in tlic q“’ unit periodic cell, and it is assumed that the 

Tlicsc. oquatioiis c im bc voliinic averagd o v ( ~  the at’’ siibvoluiiw in the unit periodic cell 



and 

111 these equations the deviation strain increments AcZl are evaluated from the uiiified 
viscoplastic constitutive relation for the ath subvolume based on the stress value crz",(f) or 
aG(rn) in the subvolume, according as the ath subvolume is in the fiber or the matrix phase, 
respectively. The notation 6Dgk, also denotes the value of DGkl - DTkl or 0 according as the 
at*' subvolume is in the fiber or matrix phase, respectively. 

If we use Nemat-Nasser's notation and write 

Q" (e )  = dV(r) 
I:, 

VO 

T I  
and denote 

"ff fff = - 
v, 

as the volume fraction of the ath subvolume, then the preceding equations may be written as 
r - 

J 

and 

(193) 

wherc bctJ = 1 if CL = i(j and bad = 0 if CL # /3, and no sums on a ,p  are intended uniess 
explicitly stated. 

Now SDE,, = 0 if the at'' subvolume resides in the matrix. In this case equations 188 and 
189 show that 

A&;;' = A(.:/ for h1 < 5 N ( 194) 

Thus. oiily A I  urik~iowris (associated with the sul>voliimes in the fiber) are involved in A&,*? 
R I I ~  tlic N - A I  known quantities (associated with the subvolumes in the matrix) given b?- 
cqiwt i o 1 1  1113 may 1)c twkw ovcr to the right h i d  side of the equations. Equations 192 and 
103 I I ~ [ I \  t liclivfoi (' lw R'I ittcii in  the forin 
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r 1 

d=Al+l n,=O 
(1 95) 

and 

for Q = 1 to it!!. 

series representation as 
By defining the fourth rank tensor A$ and the second rank tensor b; in the Fourier 

and 

or, in thc Green’s function representation, as 



t.lw iritogral equations caii tw cast in the form, 

M 

A$,A&:f = b?. a3 for cr = 1 to  M (201) 
p= 1 

In Voigt notation the fourth rank tensor A$s can be written as a matrix A$, and the 
second rank tensors A&;! and b; can be written as vectors and bp", so that 

M 

A$A&gtP = bp" for a = 1 to M (202) 
o= 1 

This represents a system of 6M linear equations for the unknown values netD,  each matrix 
element a@ of the matrix A consisting of a 6 x 6 submatrix, in the form 

{A&*'} \ 

{ A&*2} 

{ A&*o} 

[A,,] * - *  e * *  * ' [ A l M ]  

[A2,] . . . . . . . . . [A2M] 

- - ' 

where the submatrix elements are defined as 

and the corresponding column vectors as 

{A&"'} = and {bo} = 

This systoni can bc solved by standard Gaussian elimination. However, if A i  subvolumes 
arc iricliidctl in the fiber, these equations represent a 6M system of equations, whose solution 
may posc storage problems on the computer. 
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8.2 
A n  altvrnative is to use equations 188 and 189 in an iterative fashion. As a first guess the 
integral terms in 188 and 189 can be neglected and we obtain 

DtklA€*,," = D,'j",,AcE1 - SD,",,, [A€:, - 

Solution of Integral Equations by Iteration 

for Q = 1 to M 

corresponding to the subvolumes in the fiber, and 

DzklA&*,F = D;k,Acgl for Q = M f 1 to N 

corresponding to the subvolumes in the mat,rix. These relations can then be substituted 
into the integral terms to yield an improved "Rayleigh-Born" approximation to DGklA&iy for 
a = 1 to N. This process can then be repeated until D ~ k l A & ~ ~  converges to within a user 
specified tolerance. In essence we solve the equations 

or 

until the ( A  + 1)'" iterate differs insignificantly from the At" iterate. 
In the solution of the composite problem, two constituent phases, namely the fiber and 

nintris phases, have becn considcrcd. For cornposites with a third chcmically degrading pliast. 
separating the fiber from the matrix, the preccding solutions may be modified by assuniing 
that, in the summations from ,l3 = 1 to A f ,  some of the subvolunies, say from p = L to 
A I ,  pertain to the degraded material. It will then be necessary to postulate a viscoplastic 
const itiitive relation for this chemically degrading phase. 

The total strain increment in the Cyti1 subvolume in the unit cell is then obtained by 
averaging equations 57 and 80 over the a''' subvolume to give, 
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or 

for a = 1 to N. 

volume, is then given for the ath subvolume as the average of equation 35 in the form, 
The constitutive relation, required to update the stress and state variables in each sub- 

ACT: = DZ’jL,, ( A E ~  - A&:;) (210) 

If we assume that N = 2, with one subvolume in the fiber and the other in the matrix, 
then the theory is similar to the self-consistent model in which the strain increments in 
the constituent phases are assumed to be spatially constant and equal to their respective 
constituent volume averages. However, the interaction effects of the nearest neighboring 
cells are fully accounted for since geometric periodicity is assunled in the integral equation 
formulation and the material outside the unit cell has not been smeared into an “effectivc” 
uniform material. 

In both the Fourier series and the Green’s function formulations integrals of the form 

need to be evaluated over the subvolurne, V,. These Laue interference integrals [39] can be 
evaluated exactly if each subvolume consists of a circular or oblong cylinder. In the case of a 
circular cylindrical fiber, each subvolume within the fiber would consist of an infinite cylinder 
with a cross-section in the shape of an element of area in cylindrical coordinates, coniprised 
of two circular arcs with constant radii, r1 and rz, arid two radial segments along the liiics 
of constant O1 and 02.  An attempt will be made to evaluate equation 211 for this type of 
cross-section. If this proves too unwieldy, the subvolumes within the cylindrical fiber can 
be taken to be cylinders themselves, with the cylindrical fiber represented as a “bundle of 
sticks”. We assume that the actual fiber is comprised of subvolumes of the correct shape, but 
we make an approximation in performing the volume integration over a circular cylindrical 
subvolurne. 

9 Concluding Remarks 
Tllk tlociinicrit is the first annual report on NASA Grant NAG3-882. Much of the work on 
whic.11 this rcport is based exists only as a mklange in the literature and we have therefore 
attcIiiptcd to write the report in enough mathematical detail that it can be worked through 
without refercncc to the literature. In the second year we shall work out the required integrals 
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i l l  t , l i c I  fortiiiiltttioiis a i d  program the methods in FORTRAN siibroutines suitable for inclu- 
sion iii rioiiliriear finite element programs. In the third year we will determine the material 
constants for various composite materials and provide a comparison of the present theory 
with fiIiite element and experimental results. 

Our aim is to produce an end product which can be used in nonlinear finite element 
and boundary element programs for analyzing the structural behavior of composite materials 
under t hermomechanical loading conditions at elevated temperature. 

The viscoplastic behavior of periodic composites is analyzed by means of implicit integral 
equations. These integral equations arise when the problem of determining the stress-strain 
variation throughout a unit periodic cell in the periodic composite is solved by a Fourier 
series or Green’s function approach. In this report we show that the Fourier series and 
Green’s function approaches are mathematically equivalent by means of the Poisson sum 
formula. By applying simplifying assumptions the integral equations can be solved in an 
approxiiiiate fashion and used in structural analysis programs to analyze the overall behavior 
of tlw coiiiposit,t.. Wlic~i t81ic strain-tenipcr~~ltiire history at the “damage critical” location 
has twcw deterniiiied from the structural analysis, this can be used to “drive” the “exact” 
integral equations to determine the stress-strain history variation throughout a unit periodic 
cell located at  the critical location. 

The unit cell in the periodic structure can be formulated to analyze fibrous, laminated 
arid particulate composites. By retaining the effects due to the application of displacements 
and tractions a t  the surface of the composite it is also possible to  analyze the behavior of thin 
walled composite sections such as are found in turbine engine combustor liners and blades. 
When this is done the integral equations which must be solved are basically those which are 
used in boundary element programs. In the constitutive subroutine which we plan to  embed 
in the nonlinear finite element program to analyze the overall macroscopic behavior of the 
composite, we effectively have a boundary element equation (specialized for the case of a 
periodic composite) which we solve in an approximate fashion for the stress at the Gaussian 
integration point when the boundary displacement on the element is prescribed by the finite 
element program. 

Whcn the effects of damage are included in the constitutive formulations it will be possible 
to enibcd the subroutiiie in an optimizatioii program such as ADS in order to deterniine 
opt iniuni composite coiifigurations. 

I 
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Appendix A 
Properties of the Green’s Function 

Consider a point force f k  (r’) acting at  the point r’ in an infinite medium with elasticity tensor 
D2jk.,. From the definition of the Green’s function the displacement at the field point r due 
to the puint force f k  (r’) at r‘ is 

so that the infinitesimal strain at  r is 

and the associated stress is 
o / c p  (r) = Dkpim Eini  (r) 

or 

Since the elasticity tensor Dkpinl is symmetric with respect to the indices i and m, the last 
relation can be written as 

For static equilibrium, we must have 

where S denotes any closed surface in the infinite medium with an outward unit normal n,(r) 
which surrounds the point of application of t,he point force f k  (r’). An application of Gauss’ 
divergence theorem gives 

( A . 9 )  
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I Since fj (r’) and V are arbitrary, then 

d2Gij ( r  - r’) 
Dkpirn + 6 k j 6  ( r  - r’) = 0 

axrdxp 
(A.lO) 

is the differential relation satisfied by the Green’s tensor function. When multiplied by fj, 
this is just Navier’s equation of elasticity with the displacement ui(r)  = Gij ( r  - r’) f j  (r’) and 
the body force set equal to 6 k j  fj (r’) 6 (r - r’). 

Rearranging the indices, this differential relation can be expressed as 

+ 6ip6(r) = 0 ( A . l l )  

The solution to the differential equation can be found by applying Fourier integral tech- 
niques. On multiplying the differential relation by eiKqX9 dxl dx2 dx3, i e . ,  by e i K . r  dV(r) ,  and 
integrating over all space, we obtain 

-00 

(A.12) 
-00 

From the sifting properties of the Dirac delta function the last integral is unity, so that 

(A.13) 

I Iiitcgration by parts severally with respect to x1,x2,z3 then gives 

+ 62, = 0 (A.  14) 

Tlic surface integrals are zero since dGkp(r)/dxj vanishes at the infinite lower and upper 
liiiiits of integration, so that one integration by parts yields the result, 

(A.15) 
I -00 

J 
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A second integration by parts yields 

-03 

where 

Gkp(K) = /T/Gkp(r)eiK.' dV(r) 

(A.17) 

(A.18) 
-m 

is the Fourier integral transform of Gkp(r). By writing C as a unit vector in the direction of 
the wave vector K. we have 

in which K = ,/= is the magnitude of the K vector. Then 

or 
K2DijklClCjGp(K) = s i p  

The Christoffel stiffness tensor M (cf. [33]) is defined by the relation 

(A.19) 

(A.20) 

(A.21) 

so that 
K2Wk(C)Gkp(K) = sip 

Premultiplying both sides by the tensor K-2M-' gives 

(A.23) 

6ij(K) = K-2MiT'(C) (A.24) 

The Fourier inverse of equation A.18 gives 

(A.25) 

whcre d"K = dK1  dJC2 dJC;%, so that we finally obtain the Green's function in t l ic i  Fouricr 
int,cgral foriii 

(A.26) 

(A.27) 
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This representation of the Green’s function yields explicit results for isotropic and transversely 
isotropic materials (cf. Mura’s book, [24]). For cubic and general anisotropy the Fourier 
integral representation must be used. 

Often, we are concerned with volume integrals of the Green’s function and its derivatives 
with respect to r ,  such as UklmrL(r). It is then advantageous to use the Fourier integral 
rcyrcwritation even for isotropic and transversely isotropic materials. The advantage is gained 
by rcversing the order of the wave vector and volume integrations, whereby many of the 
integrations can be carried out explicitly. 

Sir William Thonison (Lord Kelvin) obtained an explicit form for the Green’s function of 
an isotropic elastic material in 1848. As an example we may deduce the Kelvin result for the 
Green’s function of an isotropic material from the Fourier integral relation. For an isotropic 

and so A&(<) = Di jk l< lc j  has the form 

I since 

I 
The inverse tensor Miil(<) is given by the relation 

which is easily verified by showing that 

n4T1Mjk 13 = 6 i k  

From the preceding relations 

as required. 
The Green’s function is therefore obtained in the form 

Froiii 21 hble  of Fourier transforms (cf. [36]) we find that 

(A.28) 

(A.29) 

(A.30) 

(A.31) 

(A.32) 

(A.33) 

(A.34) 

(A.35) 
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which may be differentiated with respect to xi and xj to give 

By contracting the i and j indices we obtain 

O' -2K.r 3 d K  
d2r 

= ' JJJjp 
--oo 

dXjdXj T 2  

The Green's function may therefore be written as 

or 

where the relations 

(A.36) 

(A.37) 

(A.38) 

(A.39) 

(A.40) 

obtained by differentiating r = -, have been used. 
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Appendix B 
Relationship Between Fourier Series 
and Green's Function Approaches 

In the composite material the total strain increment Aec(r) is periodic in r and is defined 
by t,he relationship 

A&Fl(r) = + A&kl(r) (W 
where A&il is the strain increment applied to the composite's boundary which is equal to 
the volume average of A&(r) over the unit periodic cell, and A&kl(r) is the deviation or 
perturbation from the average value due to the presence of the fibers. 

From equations 84 and 85 the perturbed strain increment is given in the Fourier series 
and Green's function approaches by the equivalent relations, 

l or 

(B.2) 

We now show that these equations are equivalent and that the Green's function relation is 
the Poisson sum transformation of the Fourier series relation. 

From the definition of gklmn(C) in equation 54 we may write 

9k lZ j (C> = ; (nl,,'(c)<j<l + Mzm<j<k) 
or 

where 

2nni - 
(no sum on i) for i = 1,2,3. ( . = - =  1% L, 

2 f 1  
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(B.9) 

whcre 

(B. l l )  

whcre the sum over the integers n1,n2,n3 is replaced by the sum over the integers ml,m2,m:~ 

in the Fourier integrals. The sum over m, includes the case where ml = r n 2  = m3 = 0. 
We now have the alternative sum, 

1 

(B.12) 

or 

I.,. 

(B.13) 

Due to the geometric periodicity of thcx iiriit cell we Iriav write 

; m i  
dz’, d.; ds$ = d (z: - ml L 1 )  d (2; - m2L2) d (x;  - n23L3) (B.15) 

b o  tliat by iriakiiig the change of variable 
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we obtain 

where the volume integration extends over the volume V,  (ml ,  m2, m3) of  the unit cell whose 
center is at  the point (mlL1,m2L2,m3L3). Since ml,m2,m3 range over all integer values, 
the summation of the volume integrals extends to all the cells in the periodic lattice, ie.. 
it extends over the entire volume, V ,  of the composite medium. The expression for AE,((r) 
thus takes the form 

(B.18) 
V 

By interchanging the order of the volume and wave vector integrals and noting that r” 
can be replaced by r’ since it is a dummy integration variable, we obtain 

Introducing (-z~r, KiLi  r, KzLz 7 K 3 L 3 )  in place of (nl, 722, n3) in the expression for 

then gives 

with 
Ki e. = - 
K 

alricl the perturbed strain increment takes the form 

(B.21) 

(B.22) 

(B.23) 
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But. from Appeiiciix A, 

siiicc G,k (r -- r’) = Gzk (r’ - r) ,  and t,herefore 

(B.25) 

Inserting the last relation into the expression for A&kl(r) then shows that 

From the definition of the tensor Uklrnn (r - r’) in equation 83, we see that 

~Eki (r )  = / JJuk i zJ  (r - r’) D ~ ~ , A E : ,  (r’) dv(r’) (B.27) 
V 

which is the result obtained with the Grecri’s function approach. 

Green’s function expression and the two are linked via the Poisson sum formula. 
The Fourier series expression for the perturbation strain increment is thiis identical to thc 
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Appendix C 
Poisson Sum Formula 

In Fig. 7 the function f(x) = [(x - i L ) / i L ]  is shown on the unit cell extending from x = 0 
to x = L. The corresponding function defined on the nth unit cell to the right is given by 
f ( x  + nL)  and the periodic function q(x), which is comprised of the functions f ( x  + nL)  
defined on all of the unit cells extending from x = -m to x = +m, is given by 

3 

n=-m 

Each function, f ( x + n L ) ,  is defined only over the corresponding nth periodic cell and is taken 
to be zero outside of the cell. Each function can therefore be represented as a Fourier integral 
and the periodic function q(x)  can be written as a sum of Fourier integrals, 

" " 
q(x) = f(x + n L )  = Fourier integral of f ( x  + nL)  (C.2) 

n=--00 n=-m 

By setting x = 0 in both summations we obtain the Poisson sum formula. This method is 
outlined at the end of this Appendix. 

The Poisson sum formula can also be derived by expanding the periodic function q(z) into 
a Fourier expansion and showing that the Fourier integral sum, when x = 0, is the sum of 
the coefficients in the Fourier series expansion. 

Since q(x)  is a periodic function of period L,  it may be expanded into a Fourier series in 
the form 

where 1 L i2amx' 
a m = z J o  e L q (x') dx' 

The object is to show that the Fourier series 
i 2nmx i 2nmx' d x )  = - 1 "  c e - 7  1" e T q  (x') dx' 

L m=--00 

I reprcsents a sum of Fourier integrals. This is easily accomplished by introducing the expres- 
sion 

M 

q(x ' )  = f ( x ' + n L )  
n=-" 

into the Fourier expansion and changing the integration variable by means of the relation 

y = x ' + n L  (C.6) 

~ 

111 this way we obtain 
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The exponential function exp(i2lrmy/L) is a periodic function with period L,  so that 

i27rm(y-nL) 227rmy 
e L  = e  L 

If we set 2 = 0 and note that the sum over the integration limits is equivalent to summing 
over the entire axis of x from x = -00 to x = +00, we obtain 

Putting L = 1 gives 

and by changing the integration variable to I( = 2lry/L, we obtain 

(C. lo )  

( C . l l )  

In three dimensions this result takes the form 

which is the form used in Appendix B. The cubic function defined here for illustration purposes 
has the property that the constant a0 in the Fourier expansion is zero, since s," f(x) dx = 0. 
This term may therefore be omitted from the summation on the left and the summation signs 
primed to denotc the omission of the term with nl = n2 = n3 = 0. 

It is now possible to show that the Poisson sum formula follows from the Fourier integral 
sun1 in equation C.2. 

We have the Fourier integral sum representation 

where tho Dirac dclta fimction is given by the Fourier integral 

d z  ,i (y--1n)z S(y - m) = - 

Then the Fourier integral of f ( m )  is 

1 P o 3  roo 

f (m, )  = J d z  /-, e i zy  f (Y) dY 21r -ca 

(C.13) 

(C.14) 

(C. 15) 
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Putting z = 27ra gives 
00 

f (mj  = ita ei2ncry f (y) dy 
J-00 J -00 

The Fourier series expansion which culminates in equation C.10 shows that 

so that equation C.16 becomes 

We may therefore write 

(C.16) 

(C.17) 

(C.18) 

I 
~ 

This is the Poisson sum formula in equation C.10, from which equations C . l l  and C.12 follow. 
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Appendix D 
Integral Equation for Displacement Increment 

In Neighborhood of Free Surface 

The static equilibrium equation for a medium with elasticity tensor Dgkl is obtained from 
equation 37 as 

in which A & z ( r )  = AE:l(r) + A&kl(r). 

at the surface of the composite is constant and will take it as a spatial variable. If we set 
In this equilibrium relation we will not assume that the strain increment AE:!(r) applied 

and note that 

the equilibrium equation may be written in the form 

where the symmetry of DZkl with respect to  the indices IC and 1 has been used. On denoting 
the operator Fjl by the relationship 

the equilibrium equation is 
Fi,At$ = Afi 

Now consider the integral 

for any two field variables & ( r )  and &(r).  These field variables may be tensors of any rank. 
For example, if q5 and $ were second rank tensors, then I(@, $) would be a second rank 
tensor integral 
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~ 

From the definition of the operator Fij we have 

and since 

the integral becomes 

The first integral can be transformed into a surface integral via Gauss’ divergence theoreni, 
so that 

By interchanging the arguments 4 and ?,b it is evident that 

I Now thc elasticity tensor DFqJ is symmetric with respect to its indices, so that the interchanges 

i p  + p i ,  q j  + j q ,  iP * (4j or j4)7 q j  tf ( i p  or p i )  (D.14) 

l c w ~  the elasticity tensor unaltered. This shows that the volume integrals in I (+,$)  and 
I($. 4)  are idcntical, so that Green’s identity ([38], page 434) can be written as 

Now choose the field variables 4 and $ as a vector and second rank tensor in the forms 
~ 

I 4i (r’) = AwT (r’) - AuY (r’) = A u ~  (r’) (D.17) 

i l l l t l  

UT,,, (r’) = G,, (r - r’) (D.18) 

wl icw ( 1 ,  (r’) is tlic pcrtiirt)atioii clisplaccmerit increment Au, (r’) and G,,] (r - r’) is the Grccn‘:, 
tcilisor f i i i i ( ~ t i o i i  satisfjiiig tho diffiwiitid equation (cf. Appcntlix A) ,  

FOG,,, (r - r’) + 6,L.S (r - r’) = 0 (D. 19) 
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The integral relation then becomes 

Replacing 3 i j G j k  (r - r’) by -&S (r - r’) in the first term of the volume integral gives 

Auz(r) - Au!(r) + ///Gik (r - r’) Fij (AUT (r’) - AuY (r’)) dV(r’) 
V 

(D.21) 

From the definition of the operator 3 i j  we obtain the relation 

(D.22) d 
.FijAuT(r) = Afi(r) = - { DZklA&(r)} 

d X j  

and by inserting this result into the integral equation and noting that 

we find that the total displacement increment is 

In the volume integral an integration by parts with Gauss’ divergence theorem using the 
relationship 

dGik (r - r’) aGik (r - r’) - - - 
ax; dxj 

(D.25) 
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gives 

This result may now be substituted into the iiitegral equation to produce 

+ nj (r’) (Gik (r - r’) Dzrs (r’) - A€:, (r’)) + 

(D.26) 

dV(r’) + 

(D.27) 

In the first two terins of the surface integral we observe from equation 35 that 

nj (r’) DzYrs (AE?, (r’) - A& (r’)) = njAoij (r’) = Ati (r’) (D.28) 

represerit,s the incremental surface traction on the surface of the composite. Equation D.27 
represents the well known Somigliana identity ([38], page 93) for the displacement increment. 
In the case where the composite is assumed to be of infinite extent the surface integrals in 
the preceding integral equation vanish, and if A& (r’) is assumed to be spatially constant, 
the t,otal displacement increment is given by the relationship, 

(D.29) 

which corresponds to equation 79 and is the form used in the main report. However, equa- 
tion D.27 must be used when the surface is not infinitely removed and if A&:, (r’) is not 
assumed to be constant. 

In a finite element context it will normally be assumed that the fibers are very sinal1 in 
cornparisoil with the dinitmions of the finite element. At the Gaussian integration point in  
thcb fi l i i  tci cllernciit it is thcn pcrrriissible to ncglcct the contribution froiii the siirfxe iiitcgral:, 
sinw the surface of the finite element is assunicd to be many periodic cells itwity at “iiifinity” . 
In mmv situatioiis, however, this may not tw  a valid assumption. Some turbine blades and 
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turbine engine cornbiistor liners are fabricated from thin sections in which the central passages 
iLrc hollow to ;~ l low cwoling air  to pass throiigli 1J1e c.oIriporic~ritt. I i i  tali(: thin cross scxtims of 
such c.onij)onc!iil.s thc siirf‘aco integrals must be retained in thc const,itiit.ive forinulatioii. 

Supposc~. for c1xaiiiple, that t,hc total displacement incrcinent at tlie  iod de points of a finitci 
element are given. From these nodal values and a knowledge of the element’s displacement 
interpolation functions it is then possible to compute the total displacement increment Aui  (r) 
on the surface of the element and the total strain increment A&:,(r) at any point. Since 
AUT (r’) = A$ (r’) on the surface of the finite element, the last term in the integral equation 
vanishes and the total displacement increment is determined from 

in which the terms in the surface integral represent the contribution to the total displacement 
increment due to the incremental traction, 

At, (r’) = nj (r’) D,”,’r, (AE; (r’) - A&:, (r’)) (D.31) 

on the surface of the element. This surface traction is needed to maintain the displacement 
iiicrcment equality AUT (r’) = Aug (r’), which is imposed at  the element’s surface. 

By diffcrentiatiig AuF(r) with respect to XI; and x1 and taking half the sum, the total 
strain increment is subject to the integral equation 

(D.32) 

in which 
D:klA~;, (r’) = Dzkl  Ac,, (r’) - SDllkl (r’) (r’) - Ackl (r’)] (D.33) 

and this integral equatiori should be used for thin sections of composite material where sur- 
face effects are important. This implicit integral equation is similar to that for the infinite 
rnediuin h i t  contains a correction term for the surface effects in the last integral. This surface 
integral will become less important-- due to the derivatives of the Green’s functioii ~ when 
the integration points r‘ are far removed from the field point r and it vanishes for a 1 1  infinite 
medium. 

111 the preceding development it was assumed that the displacement increment Au: (r’) was 
known, by interpolation with tlie element tiisplacenient polynomials, from the nodal values. 
This forces the incremental surface traction At, (r’) to adopt a periodic distribution in order 
to maintain AUT (r’) = A$ (r’) on the surface of the element. We could, altcmiatively, assume 
that the suiface traction increiiierit is zero on the free surface of the elenient, in which case 
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1 the total tlisplaceiiiciit increment nu‘”( r) will cxhibit a periodic variatioIi on thc the surfaw 
and the surface takes on the appearance of a frilled structure. 

If we therefore assunic that the finite elenient is thin (see Fig. 8); that the surfaces are 
frce of surface traction; and that the surfaces at the ends of the finite element are sufficiently 
far removed from the Gaussian integration point, the first term in the surface integral in the 
integral equation is zero and in lieu of equation D.30 the relationship for the total displacement 
increment now takes the form, 

AUT(.) = nu:(.) - JJJ aGiki:j- r’) D;Yrs (A&:, (r’) - A&:s (r’)) dV(r’) + 
V 

The solution to this integral equation gives a periodic total displacement increment, Aur(r) ,  
which, on the surface of the composite, will exhibit frilling. 

It is clear that during the finite element analysis frilling will not occur in the elenlent. Thc 
interpolation functions normally used in isaparametric elements are linear and quadratic, and 
cannot adopt the required periodic behavior. However, the stzflness of the finite element-as 
computed at the Gaussian integration points with the composite constitutive model-will 
reflect that the fact that the constitutive properties are computed as  though the  e lement  were 
free to take on  a frilled appearance. When the “damage critical” strain-temperature history is 
used to determine the stress-strain history variation throughout the unit periodic cell outside 
of the finite element program, the preceding integral equation will allow the frilled appearance 
of the composite to be calculated. 
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Appendix E 
Evaluation of the Eshelby Tensor 

The Eshelby tensor Siplm is defined by the relation 

or as 

V 

where the field point r lies within the volume, V ,  and where the volume extends over an 
infinite cylinder of radius a in a medium wit,h elasticity tensor DZ3kl. Although the Green's 
function for transvcrsely isotropic materials is known [24], it is niore convenient to work with 
the Fourier integral representation of the Green's function as given in Appendix A. 

Introdiiction of the Fourier integral representation, 
cy) 

d3K Mzi' (c) -iK.(r-r') 
Gik (r - r') = JJJm K2 e 

-0s 

where Cz = K , / K  = K, / /KqKq ,  into one of the volume integrals in the definition of Szplrn 
gives, on reversing the order of the volume and wave vector integrations, 

or 

The Laue interfereiice integral [39] extends ovvr the cylindrical volume and can be written as 

Let xi = QCOSO, x: = ~ s i r i O .  Thcn in Cylindrical coordinates 

m Since 
e"3"; d..c:3 = 2 ~ 6  (K3) L 

where 6 ( K S )  is the Dirac delta function, the integral takes the form 



-, d e =  dq . Then, if K = d m ,  Jm 
(E.10) 

( E . l l )  

Since t8he integration extends over a whole circumference, it is immaterial where the origin 
of B is placed. The integral may therefore be written as 

or as 

I = 4n26 (K3) n Jm 
where JO and 51 denote the usual Bessel functions of order zero and one. 

The integral L k g i J  can therefore be written as 

(E.12) 

(E.13) 

Now 

(E.15) 

so that 

If k = 3 or .y = 3, the Dirac delta function S ( K 3 )  gives zero values for the integral. Hence, 
the iion-zero idlies of L k g i l  are given by k = 1 , 2  and g = 1 ,2 .  



Invoking the sifting properties of the Dirac delta function, viz., 

00 

f (K1, K2, K3) 6 ( I G )  dK3 = f (K1, K270) 

then gives 

(E.17) 

(E.18) 
where the unit vector C is now defined by the relations 

If we put 

and set z1 = T cos 4, x2 = T sin 4, then in cylindrical coordinates, 

The integration with respect to 6' extends over a complete circumference, so that 

(E.22) 

Since Siplrrl is real, the real part of the preceding integral involving the int,egration over K is 

00 

N = a , c o s ( h - r c o s 8 ) J l ( n K ) d K  (E.23) 

Setting z = T C O S ~ ' ,  and noting that cos(K2) = cos(-Kz), we need be concerned only with 
positive values of z .  Now if the field point r lies within the cylindrical volume, then 0 5 2 5 a. 
But, from Gradshteyn and Ryzhik [40], 

n cos {sin-' ( z / u ) }  
J i F - 7  

AT = lm n cos(Kz) J1 (aK) dK = for 0 5 z 5 u (E.24) 

If y = sin-'(z/a), then 

(E.25) 
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Thus 
(E.26) 

independent of position r in the cylinder as expected from Eshelby's result. In this integral we 

have (1 = cos8. <2 = sino, (3 = 0, Mi;' ( < I ,  <2) = (<mDm+cn)-l and k and g are restricted 
to the values 1 and 2. The Eshelby tensor may now be written as 

When <,{ = 0 the Christoffel stiffness tensor for a transversely isotropic material, Aft, ,  and its 
inverse, Adt;', (which applies to the homogenized medium of a composite with fibers arranged 
in hexagonal arrays) have the coniponent forins 

1 2 (Dllll - ,1122) c l  + n111c;  

p 1 1 1 1  (01111 - 0 1 1 2 2 )  
M i 1  = 

hf; 1 = M-1 = - 
- 
Diiii + 0 1 1 2 2  

- 
21 Diiii (01111 - 0 1 1 2 2 )  

I Thc Eshclby tensor can now be determined by integration in the form, 

- 501111 -k 0 1 1 2 2  

8Diiii 
SI111 - 

s .2222 = Sllll 

S I 1 2 2  - 
- 3 0 1 1 2 2  - 01111 

m l l l  

(E.28) 

(E.29) 

(E.30) 
(E.31) 
(E.32) 

(E.33) 

(E.34) 

(E.35) 

(E.36) 

(E.37) 

(E.38) 

(E.39) 

(E.40) 

(E.41) 

(E.42) 

G4 

(E.43) 



( k;. 4 3 ) 

(E.46) 

(E.45) 

The Eshelby tensor for tetragonal materials -which applies to the homogenized medium 
of a composite with a square array of fibers--is currently being worked out. 

The results for an infinite isotropic cylinder may be recovered by taking 
- - 

Dllll  = 2p(1 - u) / ( l  - 2v), 01122 = 2pu/(l  - 2u), and 01133 = 2pu/(l  - 2u) (E.48) 

where p is the Lam6 shear modulus and u is Poisson’s ratio. For an infinite isotropic cylinder 
the Eshelby tensor reduces to 

5 - 4u 
8(1 - U )  

- 
Sllll - 

s2222  = Sllll 

s1133 = s 2 2 3 3  

s 2 2 1 1  = s1122  

s1212  = s 1 2 2 1  = 
3 - 4u 

8(1 - U )  

(E.49) 

(E.50) 

(E.51) 

(E.52) 

(E.53) 
(E.54) 

(E.5.5) 

The Eshelby tensor for both isotropic and transversely isotropic matterials can also be 
deduced frorn equ;tt,ions 17.27, 17.30 and 17.31 of Mura’s book, [24], by setting Q = 0 in his 
notation. 
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Appendix F 
Proof that Uijk](x - y) = U i j k ~ ( ~  - X) 

From the definition of u i j k l ( X  - y )  we have 

I The operator can therefore be written as 

I 

But Gik(x - y )  = Gik(y  - x), so that 

or 

as required. 



Appendix G 
Differentiation of Singular Integrals 

In the text and Appendices we have taken derivatives of the volume integrals and written, 
for example, 

d2Gik (r - r’) 
DFrs A€.,*, (r’) dV (r’) 

= /JJ ax,axj 
V 

If the integration volume V contains the field point r the integrand dG,k (r - r’) /ax,? is 
singular a t  the point r’ = r, and the above opcx-ation in which the derivative is taken inside 
the integral inust be treated with cautioii, as pointed out by Bui, [41] and Born and Wolf, 
[42]. We should, in fact, isolate a small spherical volume, D, about the singular point r‘ = r 
and evaluate the integral according to Bui’s procedure, viz., 

where we have used the fact that, if the spherical volume D about the point r is sniall enough, 
the strain increment can be considered constant and taken to have the value at the center of 
the sphere, A&;b(r). The integral may therefore be writt,en as 

d2G,k (r - r’) 
D&A&.,*, (r’) dV(r’) - 

dx,3x, 
\‘--D 

dG,k (r - r’) 
-- / J n q  (r’) - dS (r’) Dt,., A& (r) a.r, 

S 

(G .3 )  

The first volume integral is evaluated in the priiicipal value sense as D + 0. 
Rathcr than using the preceding operatioils outlined by Biii, we iiiay trcat G,, (r - r’) 

i ls  a Fourier integral. The prcccding operations are not thcii I K W S S I L ~ ~  aiid tlic dcriixtii-r~ 
can he taken inside the iiitcgral. That is, eqiiatioii (2.1 is vdid when the Fourier iiitcgral 
r cpxwnt  ation of tlic Green’s function is used. 
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To demonstrate the validity of equation G.l ,  consider the singular integral used by Bui. 
I I ( $  coiisiclors t,lic dcxrivativo of t h :  integral 

1 - x  
- l t - x  1 + x  F(x )  = /’ = log 1-1 

where -1 < z < 1. Since the integral is known, its derivative is simply found as 

1 1 - d F  
dX X - 1  ~ + l  

Notice that the integrand is singular at  the point t = x. Bui demonstrates that in order to 
take the derivative of the integral we must write it in its principal value sense, 

and the derivative d F / d z  must be evaluat,ed by rioting that both limits and the integrand are 
fiinctioiis of x. Using Leibnitz’s rule for differeiitiating an integral whose limits depend on I 
gives 

d(X - E )  1 
~ = l im( 
d F  
d x  €-to dx x - E - x  

d ( x + E )  1 + I 1  .?- (’> d t )  
d x  X + F - x  x+cdx t - x  

or 
1 1 - d F  

d x  X - 1  ~ + l  
To avoid tlic convc(:t,d tcriiis wliich arise fro111 differeiitiatiiig an integral whose limits 

dcpcnd 011 x. coiisider representing the integrand as a Fourier integral. We have, from Grad- 
shteyn and Rhyzik [43], the Fourier integral representation, 

The singular int,egral F ( T )  can then be written as 

(G.10) 



If we now differentiate with respect to x in the normal inanner we obtain 

(G. l l )  

A comparison of this integral with equation C.9 shows that this Fourier integral has the 
inverse relation, 

1 1 - - dF 
~ 

dx ~ - - l  ~ + 1  
(G.12) 

which is thc correct result. 
Thus, by expanding the integrand of a singular integral as a Fourier integral, reversing the 

integrals, taking the normal derivative, and inverting the resulting Fourier integral, we obtain 
the correct derivative of the singular integral. It is then clear that if the Green's function is 
represented in Fourier integral form the procedure of Bui is not required. In fact, the Eshelby 
tensor in Appendix E is obtained by taking the derivative of the Fourier integral, and the 
correct result is obtained. 
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Appendix H 
Origin of Self-Consistency 

Many researchers in the mechanics literature suggest that the self-consistent method has its 
origins in the present century. It would appear that the method is, however, very old and 
has its origins in tlie last century. In the Lorcntz-Lorenz theory ([42], page 87 and [45]) of 
1880 thc electric dipole inornent p in a dielectric is related to the electric field E’ by the 
constitutive relation p = CYE’, where a is the polarizability. The polarizability Q is related to 
the refractive index 12 and the number of molecules per unit volume, N .  If E is the mean or 
volume averaged field applied to the dielectric the actual field at  any point is given by 

41rN 
3 E ’ = E + - -  P 

wlicrc 4nNp/3 dciiotcs the pert iirbation or devi;it,ion from the avcragc electric field. As shown 
oii pagc 85 of reference [42] this value is cstiiiiatcd by smearing tlie effects of the niolccules 
outsidc a spherical voluine enclosing the point at, which the field is observed. An analogous 
formula for statical fields had been derived even earlier by Clausius in 1879 and Mossotti in 
1850. 

Twcrsky [44] observes: 

In the biography of John William Strutt (third Baron Rayleigh) by his son Robert 
.John (the fourth baron), the son quotes the father on the verse that faces the ini- 
tial contents page of the first four of Lord Rayleigh’s six volumes of Scientific 
Papers: “When I was bringing out my Scientific Papers I proposed a motto from 
the Psalms, ‘The works of the Lord are Great, sought out of all them that have 
pleasure therein’. The Secretary to the Press suggested with many apologies that 
the reader might suppose that I was the Lord.” The Secretary need not have been 
so apologetic. The second verse of Psalm 111 should have been augmented with 
the next three lines: “His work is honourable and glorious, and his righteousness 
endureth forever. He hath made his wonderful works to be remembered.” Depart- 
ing from King James‘ translation, we may read in the Hebrew of the last, verse 
of this psalm the most important of all the Rayleigh principles of mathematical 
physics that the wise bcginniiig of work iii this field is to assume that the prob- 
lcm had hceri corisidered by Rayleigli arid to study his works: “The beginning of 
wisdom is reverence for the Lord; very good sense have all who do so.” 

Rayleigh [45] tackled the problem in his paper “On The Influence of Obstacles Arranged 
in Rectangular Order Upon the Properties of  a Medium” and was probably the first person to 
define when tlie self-consistent method, uzz. tlie Lorentz-Lorenz formula, could be expected 
to break down. At the end of his paper he states: 

The general conclusion as regards the optical application is that, even if we may 
iieglcct dispersion, we must not expect such formulz as (the Lorentz-Lorenz equa- 
tion) to be more than approxiniatcly correct in the case of dense fluid and solid 
1 )od i os. 
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FIGURE 1. - TURBINE BLADE WITH PERIODIC MICROSTRUCTURE. 
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FIGURE 5. - PERIODIC UNIT CELL I N  HEXAGONAL FIBER ARRAY SURROUNDED 
BY NEAREST NEIGHBOR CELLS. 
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